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A new method is proposed for calculating correlation effects in atomic and molecular systems. 
The basis of the method is the formulation of a set of partial configuration expansions which yield 
directly variational orbital correlation corrections which are appropriately summed in order to 
obtain an estimate of the total Correlation energy. This method is applied to the ground state of boron 
hydride and its cation at the equilibrium distance of BH. The results of the method are compared 
in detail with independent electron pair results and second order CI results. It is further shown that 
multiple substitutions are approximately accounted for in this method and the extent to which they 
are included is compared with other approximations. Finally, three methods of increasing accuracy, 
aimed at reducing the necessary computational effort, are given for determining the vertical ionization 
potential. The most economical method yields an IP of 9.70 eV or 0.03 eV less than the experimental 
IP. Completion of the basis is estimated to improve this value to 9.77 eV. 
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1. Introduction 

The last 15 years  has seen a good  dea l  of p rogress  in the eva lua t ion  of  e lec t ron 
cor re la t ion  cor rec ted  wavefunct ions  and  p roper t i e s  of  a toms  and  molecules.  One 
of the centra l  con t r ibu t ing  factors to this p rogress  has  been the idea of decoup l ing  
the N-e l ec t ron  sys tem into smal ler  subsys tems by  neglect ing a po r t i on  of  the 
coupl ing  e lements  ar is ing in the exact  Schr6d inge r  equat ion ,  and  at  the same 
t ime t runca t ing  the m a n y - b o d y  expans ion  at a low orde r  while impl ic i t ly  in- 
c luding h igher  o rde r  effects [1].  

Decoup l ing  has  its or igins in nuclear  theo ry  [2]  and  in the ear ly  sixties the 
concept  was t aken  over  by  a n u m b e r  of worke r s  in a tomic  and  molecu la r  physics  
and  a d a p t e d  to the  non- inf in i te  systems met  in this area. S inano~lu  l-3], work ing  
on the basis  of  a cluster  d e v e l o p m e n t  of the exact  wavefunct ion,  deve loped  me thods  
for de t e rmin ing  pa i r  cor rec t ions  to the H a r t r e e - F o c k  (HF)  wavefunct ion.  Nes-  
bet  [4], on  the o ther  hand,  a t t emp t ing  to s tay as close as poss ib le  to the  famil iar  
Conf igu ra t ion  In t e rac t ion  (CI) me thod ,  deve loped  a scheme, which in pr inc ip le  
can be ex tended  to ob t a in  the exact  energy and  wavefunct ion,  for ca lcula t ing  
pa i r  co r re la t ion  cor rec t ions  by  pe r fo rming  a n u m b e r  of  pa r t i a l  CI  calculat ions.  
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These methods when considered together have as their central assumption 
that next to the independent particle approximation, the main correction comes 
from electron-pair interactions which can be treated independentlY [5]. The 
term Independent Electron Pair Approximation (IEPA) [6] has therefore been 
applied to all these calculational procedures. 

The IEPA has been applied succesfully to atoms [7-11] and a number of 
small molecules [12-15]. At the same time there is some evidence [15-17] that 
the quality of the approximation differs from system to system. It can further be 
expected that it deteriorates with delocalization, since in that case the structure 
of a given pair will be strongly modified by interactions with other electrons. 

When the IEPA fails, is it necessary or desirable to retain the decoupling 
concept? Within Nesbet's scheme it is possible to include higher order subgroups 
[4] in the calculation, but the increase in computation which is then required 
obviates much of the advantage gained by introducing decoupling. In a recent 
paper Meyer [18] has developed a method for carrying out second order CI 
calculations with a considerable reduction in computational effort. This has been 
achieved by partially relaxing the orthogonality requirement between the orbitals. 
At the same time he proposed a coupled electron pair approach, which allows 
for approximately including the effects of higher order substitutions in the second 
order CI wavefunction. Nevertheless, no matter how efficient the computation, 
decoupling with its concomitant reduction in matrix size and the number of 
matrix elements which have to be calculated, will require less computational 
effort then the corresponding coupled calculation. Because of this, decoupling 
will remain an attractive alternative, provided that the approximations which 
are made are not to severe. 

In order to improve the IEPA it is necessary to make less severe decoupling 
assumptions. We do this by including a class of coupling elements in the formula- 
tion and computation, which are neglected in the IEPA. This change leads quite 
naturally to the idea of independent orbital correlation corrections instead of 
independent pair correlation corrections as will be discussed below. 

Giving up part of the decoupling of the IEPA yields a concomitant increase 
in computing requirements, but because the coupling between disjoint pairs is 
still excluded, the new method still provides a saving over variational second 
order CI calculations as was discussed in a previous note [19]. In the first section, 
the method is formulated and the proposed approximation is discussed. In Section 3 
the scheme is applied to BH and compared with the IEPA and second order CI. 
The details of the approximation are also discussed. Finally, in the third part 
it is shown that the approximation proposed here is well suited for calculating 
the energy changes associated with one-electron processes. As an example the 
first ionization potential of BH is determined. 

2. Formulation of  the IPPA Method 

2.1. Introductory Remarks 

Consider an N-electron system with hamiltonian ~ and wavefunction of 
the form 

~ = ~ o + X  (1) 
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where 
<eo logo) = <~o I ~ )  = 1, (2) 

<~o IX )  = o, (3) 
and 

~b o = ~ CzA  r . (4) 
K 

The Ar  are determinants constructed from a complete set of orthonormal spin- 
orbitals and the C~ are expansion parameters. The function 7 j may be approxi- 
mate or exact. 

The total energy calculated from the wavefunction defined in Eq. (1) can be 
written in the form 

E = E 0 + e (5) 

where E 0 is the reference state energy given by 

Eo = @o1~1  ~o> (6) 

and e is the energy shift [3] 

= (2<~o I ~  Ix> + <Xl . ,~-  Eo IX>)/0 + <XlX>). (7) 

When 7/is exact wavefunction Eq. (7) can be replaced by 

= <~o 1 ~  Ix> (8) 

and now the crux of the problem resides in knowing the function X. In case X 
is an approximation, solution of the Schr6dinger Equation in the configuration 
space defining ~ still leads to an energy shift of the form of Eq. (8) [9], so that 
it can be used in approximate calculations as well. One example of this is the 
IEPA where a contribution of the form of Eq. (8) is determined for each independent 
electron pair. 

2.2. The Exact  Orbital Correlation Method 

In the present formulation, orbital correlation corrections will be considered 
rather than independent pair or higher independent subgroup corrections [4]. 
We start with the second order orbital corrections by considering trial wave- 
functions of the form 

v!2, = e0 + Y, Z c ~  + ~ Z c.,.~ ~,:.~ (9) - - t J  - - t J  �9 

j a j ( ~ i )  ab 

The 4~b'.'." are excited configurations where the occupied spin-orbitals q~i, q~j, ... 
have been replaced by unoccupied spin-orbitals ~b,, ~b b . . . .  [20], and the C']jb.'.'." are 
variation parameters. The first sum in Eq. (9) is the total first order correction 
obtained by including all singly substituted configurations. The second sum 
represents the second order correction for orbital q5 i. It is constructed by including 
all double substitutions obtained by replacing occupied spin-orbitals qSi and ~bj by 
unoccupied spin-orbitals ~b, and q5 b and letting the index j take on all values 
[ 1, N] excluding i. 
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The matrix form of the Schr6dinger equation for this trial wavefunction is 

j,a j(~:i) .b (10a) 
=Co+ E J+ E 

j j(r  

where the gij are the pair correlation energies, and 

( E l 2 )  (~i~b ab ab ~ab"3 + E ab c I~1~,i)) Cij  = (~0ld~/ga[ , . / /  ( ~ i j  I ~  Ck 

k,c (i0b) 
E ab cd ab cd ~ik) Cik. < ~ ~ i I yt~ ~c,~., , i-  6,i + E E (~, i lYgl ca 

cd(g:ab) k(•i,j) cd 

Solution of this equation yields the expectation value El :) from which we define 
the net second order orbital correlation energy by 

e! :) = E! 2) - E o - e (I) (13) 

where e (1) is the net first order correlation energy to be defined below. 
Trial wavefunctions are constructed for all N occupied orbitals, and by solving 

Eqs. (10) for each trial wavefunction, N second order orbital correlation energies 
are obtained. The total net second order correlation energy is given by 

g(2) = 1 E gl 2) (12) 
i 

where the multiplicative factor �89 corrects for the fact that substitutions from a 
given pair occur in two orbital wavefunctions (OW). Thus the sum of the net 
orbital correlation energies includes every pair energy contribution twice. 

We can now extend the method to higher orders: For the third order the 
orbital trial wavefunctions have the form 

~ 1 3 ) = ~ o + E C ~ + E Z C ~ b ~ b ~ b .  + E EC']~f,O'~f, (13) 
j,a jk ab j,k( g: i) abc 

where the last term gives the third order correction for an electron occupying 
~b i with the N -  1 remaining electrons. The first and second sums in Eq. (13) are 
the complete first and second order corrections, respectively. Solution of the 
Schr6dinger equation in the configuration space defining ~}3) yields the expec- 
tation value El 3) for orbital ~b i and the net third order orbital correction 

g!3) = El3) _ Eo _ ~(1) --/3(2). (14) 

In the third order there are again N net orbital correlation corrections. The net 
total third order correlation energy is 

8(3)= (3/3) ~ e! a) (15) 
i 

where the factor 1/3 corrects for the fact that substitutions from a given triple 
ijk appear in three third order trial wavefunctions. 

This procedure can now be carried out to any order one chooses, and at every 
order N orbital wavefunctions are constructed and N net orbital correlation 
corrections are obtained. The total n'th order correction is 

~(") = (l/n) Z ~I n)" (16) 
i 
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Continuing through order N ~ we will have obtained N net correlation corrections, 
and it is easily verified that the exact energy shift is then given by 

N 

= = Z (A/n) (17) 
n n i 

2.3. Proposed Approximation 

The result of performing the entire procedure is, of course, equivalent to 
solving the N-electron Schr6dinger equation exactly, which means that the pro- 
cedure is only useful if it can be truncated at a very early stage [4]. Indeed, our 
proposal is to truncate the scheme at the second order and to replace the exact 
Eq. (17) with the approximation 

+ _) y,  12) (18) 
i 

so that the entire calculation reduces to a series of N second order variational 
calculations. 

In contrast to the IEPA where the effective potential contains an interaction 
term for the pair under consideration [21], the effective potential for the approxi- 
mation proposed here will contain the pair interactions between an electron 
occupying orbital q~i and the N -  1 remaining electrons in the system. These 
interactions can be considered as the orbital potential corrections to the average 
potential experienced by the electron in the field of N - 1 Hartree-Fock electrons. 
The terminology Independent Pair-Potential Approximation (IPPA) seems ap- 
propriate for this scheme and will be used throughout the remaining parts of 
this paper. 

When the reference state orbitals do not satisfy the Hartree-Fock equations, 
comparison of the IEPA and IPPA energy matrices 2 shows that the IEPA matrix 
contains only those first order coupling elements obtained from single substitu- 
tions of the occupied pair under consideration. On the other hand, the IPPA 
matrix contains all first order coupling elements. This fact makes the method 
used for evaluating e(1) somewhat arbitrary. One can calculate it from a first 
order Nesbet-Bethe-Goldstone (NBG) type calculation [4] or directly from the 
trial wavefunction 

I/J(1) = ~ 0  -[- 2 c a ( ~ a  (19a) 

with i,a 
S (1)= E (I)-  E0 = ~ gi (19b) 

i 

where E (a) is the expectation value of ~o). Whichever method is used, the exact 
energy shift calculated from Eq. (17) is unaffected, but the approximate energy 
shift calculated from Eq. (18) does change slightly depending on which method 
is used. Which procedure is to be preferred will be seen later. 

1 The procedure has to be done N times only in a formal sense for the N t h  order, since E~ u) is 
the exact energy for every i, i.e,, ~I N) is the exact wavefunction. 

z The IEPA energy matrix is obtained from Eqs. (10a) and (10b) by omitting all first order terms 
except those for orbitals i a n d j  and omitt ing the last sum in Eq. (10b). 



22 E.L. Mehler 

3. Application to BH 

3.1. Details of  the Calculation 

We have chosen BH as a test case for investigating the numerical valididty 
of the proposed scheme. Calculations using the a and zc basis functions from the 
basis proposed by Bender and Davidson [22] have been carried out. By using a 
truncated basis it was possible to perform both incomplete and complete CI 
calculations and to compare the approximation being proposed here with the 
IEPA and with second order CI. All calculations were carried out at an inter- 
nuclear separation of 2.336 bohr and the basis yielded an SCF energy of 
-25.12963 a.u. as compared with Cade and Huo's [233 result of -25.13137 a.u. 

In terms of the spin-orbit formulation presented in the previous section, six 
calculations would in principle have to be performed for BH with a ground 
state configuration l a l~2a2~3a3~ .  For example, the ~p~2~ trial wavefunction 
would contain all the singly substituted configurations and doubly substituted 
configurations from occupied pairs lal-6, la2a, la2-ff, la3a,  and la3~. The 
calculations reported here were, however, carried out using programs written 
in terms of spin-adapted configurations [22], and the trial wavefunctions are 
restricted to be eigenfunctions of ~2 and S~. Therefore the singly and doubly 
substituted configurations are identified in terms of space-orbitals only, and the 
orbital correlation energies and pair correlation energies discussed below are the 
space-orbital results. In addition, for the remainder of this section, contributions 
from singly substituted configurations are neglected. 

For BH then, three IPPA trial wavefunctions have to be constructed, namely 
7J1~, ~2~, and 7J3~ where the superscript (2) has been dropped. Table i gives 
schematically the structure of each type of OW and the corresponding pair energy 
contributions. ~Ua~, for example, includes contributions from the pairs la 2, la2a, 
and la3a. Table 1 further shows that the correlation energy recovered by each 
OW is just the sum of the contributions from the included pairs, i.e., the (space)- 
orbital correlation energies (OCE). 

Equation (12), which is valid for the spin-orbit formulation, has to be modified 
slightly in the space-orbit formulation because now the intra-shell pairs appear 
in only one of the orbital wavefunctions while the inter-shell pairs appear in two 

Table 1. IPPA orbital wavefunction (OW) structure and derived energy quantities for BH 

Pairs included in OW 
OW la2 la2a 2a2 la3a 2a3a 3a ~ OCE ~'b 

la x x x Xgi.1, 
2a x x x 2Ei,2~ 
30" x x x Zg l , 3 ,  , 

Multiplication l �89 1 �89 �89 1 e ~2) 
factor for pair 
contr, to 5 (2) 

a If OW's include single substitutions, the OCE's will also include a correction for them. See Table 7. 
b The gu are defined in Eq. (10a). 
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orbital wavefunctions [24]. From Table 1 it is seen that the entires in the columns 
are summed and the result is multiplied by one or one-half as indicated. Finally 
all the pair contributions are summed to obtain the total second order correlation 
correction. 

The orbital basis used for constructing the trial wavefunctions was obtained 
by combining the canonical SCF orbitals with a set of excited orbitals derived 
from a single natural orbital iteration [25] beyond the SCF level. Throughout 
the iteration the occupied orbitals were frozen so that any contributions from 
singly substituted configurations would remain negligible, and their'exclusion 
would not affect the main results of these calculations. 

Since the total number of configurations which can be constructed for the 
IPPA trial wavefunctions can still be quite large, it is of interest to investigate 
the convergence properties of wavefunctions expanded with only a partial set 
of the possible configurations. Without requiring that the orbital basis is optimal 
in the iterative natural orbital sense [22, 25], calculations have been carried out 
using a truncated set of configurations for each occupied pair (Incomplete Con- 
figuration Interaction, ICI) and a complete set of configurations (Complete 
Configuration Interaction, CCI). The trial wavefunctions used in the ICI calcu- 
lations were constructed from 776 of the 1519 possible space configurations 
which can be formed from the basis. The configurations were selected with the 
help of second order perturbation theory [22], and only those configurations 
with an energy contribution greater then 10 -~ a.u. were retained. 

3.2. Energy Results for BH 

With these two types of configuration expansions, IEPA, IPPA and second 
order CI calculations were performed. The global results are reported in Table 2. 
It is seen that for all three approximations the ICI expansion recovers about 85 % 
of the CCI correlation energy. Table 2 also lists results from some other calcu- 

Table 2. Correlation energy results for IEPA, IPPA and 2d-order CI calculations on BH. R = 2.336 bohr  

ICI CCI 

Approximat ion Correlation % below Correlation To below 
energy (a.u.) 2d-order CI energy (a.u.) 2d-order CI %. 

IEPA -0 .11775 3.3 -0 .13910  6.2 84.7 
IPPA -0 .11726 2.9 -0 .13792 5.3 84.9 
2d-orderCI  -0 .11393 -0 .13103 86.9 

Results ~ o m o t h e r  calculat ions(in a.u.) 

IEPA 
B and D b -0 .1484  ( -0 .1332)  
V a n d N  c -0 .07783 
G a -0 .13692 

" Percent CCI correlation energy recovered by ICI. 
b Ref. [22]. The result in parentheses is the correlation energy from the 2d-order CI calculation. 
c Ref. [14]. 
a Ref. [13]. 
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lations. Comparison of our second order results with Bender and Davidson's [-22] 
should be made on the basis of our ICI calculation which indicates that their 
result is more converged then that of the present calculation. Comparison of 
our IEPA results with those of G61us et al. [13] suggests that the quality of our 
basis set is about the same as theirs. 

The principal result exhibited in Table 2 is the difference in the energy shifts, 
which demonstrates the effects of the approximations being made in the three 
approaches. 

Both the IEPA and the IPPA make essentially two different approximations 
[18], namely 

a) Neglect of certain types of coupling terms between different pairs. 
b) Approximate inclusion of the effect of unlinked clusters through partial 

neglect of normalization. 
The difference in the correlation energy recovered by complete second 

order CI wavefunctions and the experimental correlation energy is due to the 
neglect of higher order terms which are implicitly included in the IEPA and IPPA 
through the second approximation above. This implies that any approximation 
which includes the effects of higher order substitutions will have to yield an 
additional energy lowering of 5-10% [26] of the correlation energy recovered 
by a second order CI calculation. Previous calculations have shown, however, 
that IEPA results can still be quite far from the experimental results [15-17], 
probably because both approximations (a) and (b) are too extreme. On the other 
hand, the fact that the CCI energy shifts for the IPPA and the IEPA calculations 
reported in Table 2 are 5.3 % and 6.2 % greater then the second order CCI energy 
shift, respectively, indicates that the IPPA still accounts for the most important 
higher order interactions while at the same time correcting, at least partially, 
for the defects of the IEPA. 

Tables 3 and 4 tabulate the results from the IPPA calculations. Comparing 
the results listed in Table 3 with those given in Table 4, shows that the overall 
character of the ICI calculation is the same as the CCI calculation. In particular, 
the ordering of the OCE's is the same in both cases. The percentage orbital cor- 
relation energy recovered by the ICI trial wavefunctions is also given in Table 3. 
From these it is seen that the extent of convergence of the three OW's is by no 
means the same and exhibits a large variation around the 85 % total correlation 
energy recovered. For the 3o- OCE this is at least partially due to the presence of 
the lo "2 2a 21~ 2 configuration which is nearly degenerate with the reference state. 

Table 3. IPPA-ICI pair correlation energy analysis of BH(energies in atomic units) 

O W  lo 2 lo2a 2a 2 la3a 2a3o 302 __g!2) %a 

la 0.03591 0.00303 0.00345 0.04239 98 
20 0.00297 0.02502 0.02294 0.05093 83 
3G 0.00337 0.02307 0.02691 0.05335 77 

0.03591 0.00300 0.02502 0.00341 0.02301 0.02691 0.11726 85 

a Percent CCI correlation energy recovered by ICI. 
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Table 4. IPPA-CCI pair correlation energy analysis of BH (energies in atomic units) 

25 

OW lo 2 la2a 2a 2 l~3r 2~3r 362 -e~ 2) R" 

1~ 0.03623 0.00322 0.00361 0.04306 0.18 
2G 0.00309 0.02907 0.02891 0.06107 1.1 
3~ 0.00342 0.02862 0.03718 0.06922 0.86 

0.03623 0.00316 0.02907 0.00352 0.02876 0.03718 0.13792 

a Ratio ofintershell orbital correlation energy to intrashell orbital correlation energy. 

The mixing coefficient for this configuration is rather unstable, varying from 
about 0.1 in the ICI calculations to about 0.2 in the CCI calculations. This in- 
stability is probably due to the particular form of the orbitals used here, and is 
also the source of the large difference in the unlinked cluster effect between the 
ICI and CCI calculations. The results obtained here for the ICI calculations 
indicate that some care must be taken in insuring a balanced convergence when 
carrying out a number of partial CI calculations. The ICI calculations are currently 
being reinvestigated with improved basis sets, and initial results show that con- 
vergence is entirely satisfactory when care is taken in obtaining optimized natural 
orbitals [22]. These investigations will be described elsewhere [-27]. 

From Table 4 it is further seen that the main effect in the lo- OW is due to 
the contribution from the lo. 2 pair while the lo. 2o- and lo.3o, intershell pair energies 
are only about 10% as large. On the other hand, the valence shell shows no such 
preference for a particular pair. This effect is clearly demonstrated in the last 
column of Table 4 where the ratio of the intershell to the intrashell correlation 
energy is tabulated for each OW. The results show that the 1 o 2 pair is essentially 
independent, while the four valence shell electrons exhibit strong interactions. 
These conclusions are in agreement with the results obtained from previous 
calculations [13, 22, 28]. 

Table 5 lists the pair energies for all three approximations. These results 
show that the energy contributions from the lo. 2, lo-2o-, and lo.3~ pairs are not 
very sensitive to the type of approximation used, indicating that many-body 
effects make only a small or negligible contribution to these pairs. The difference 
between the valence shell pairs, however, demonstrates the effect of the approxi- 

Table 5. Pair correlation energy analysis of IEPA, IPPA, and 2d-order CCI calculations for BH 

IEPA IPPA 2d-order CI 
pair - g ~  from Table 4 - g~  

la 2 0.03625 0.03623 0.03613 
la2~ 0.00324 0.00316 0.00308 
2a ~ 0.02896 0.02907 0.02716 
la3a 0.00364 0.00352 0.00341 
2a3a 0.02885 0,02876 0.02781 
3~ 2 0.03816 0.03718 0.03343 
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mations being made and shows that here the many-body interactions have an 
important influence on the results. The ratio of inter- to intrashell correlation 
energy for each orbital in the IEPA and second order CI calculation is essentially 
the same as the ratios given in Table 4. 

It is not possible to compare the 1EPA results obtained here directly with 
�9 those of Bender and Davidson [22] or with the results of G61us et al. [13] because 
the three calculations are based on three different types of occupied orbitals [29]. 
Bender and Davidson [22] used occupied natural orbitals while G6lus et al. [13] 
used localized orbitals [30]. Here the canonical SCF orbitals are used. The effect 
on the OCE's of a unitary transformation over the occupied orbitals has not yet 
been determined. It is, however, possible to calculate approximate OCE's from 
the IEPA results. Comparison of approximate OCE's computed from the IEPA 
pair energies given in Table 5 with the OCE's computed from G61us et al. [13] 
results indicates that the OCE's are considerably less sensitive to unitary transfor- 
mations than the pair energies. 

3.3. Analysis of the IPPA Method 

The energy matrix, given by Eqs. (10), shows that the IPPA neglects only 
the disjoint coupling elements between different pairs, while the IEPA neglects 
both semi-disjoint and disjoint coupling elements 2. From the second order CCI 
calculation reported in Table 2 it is possible to determine these elements and 
make some assessment of the effect of their neglect in the IEPA and the IPPA. 
The energy contributions obtained from the coupling elements between different 
pairs are defined by 

ab cd 

and are given in Table 6. The sum of the semi-disjoint contributions and the sum 
of the disjoint contributions are also listed for each pair. Inspection of Table 6 
shows that the (2a212a3a), (3a212a3a), and (2a2J3a 2) coupling elements make 
the largest contributions, and that the two semi-disjoint coupling elements are 
negative while the disjoint element is positive. 

Table 6. Semi-disjoint and disjoint coupling elements from 2d-order CCI on BH ". (Atomic units) 

pair I a 2a 20 .2 i a 3a 2a 3a 30- 2 semi- disjoint c 
disjoint b 

1o -2 2.66 --6 1.42 --5 2.88 --5 4.83 --6 1.33 --5 3.15 --5 3.23 --5 
la2a 1.37 --4 8.53 - 6  6.07 - 5  7.11 - 6  2.09 - 4  7.11 - 6  
20- 2 -2 .15  - 6  -1 .72 - 3  1.56 --3 --1.58 --3 1.57 --3 
la3a 7.68 --5 2.05 - 4  3.19 --4 -2.15 - 6  
2a3a - 1.91 --3 -3 .49 --3 4.83 --6 
30 -2 -1.71 --3 1.58 - 3  

a Energies reported are defined in Eq. (20). 
b Sum of all contributions of the type (ijl ik) over k v a i , j  for pair ij. 
c Sum of all contributions of the type (ijl kl) over k, l r i , j  for pair ij. 
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Referring now to the total semi-disjoint and disjoint contributions, it is seen 
that the largest are one order of magnitude smaller then the respective pair 
energies to which they contribute. In addition, the overall effect of the semi- 
disjoint coupling terms is energy lowering while the effect of the disjoint elements 
is energy raising. A more detailed examination shows that for the la  2 pair both 
types of coupling elements are very small and probably have little effect on the 
structure of this pair in the IPPA and second order CI calculation. For the re- 
maining pairs the semi-disjoint contributions are significant while only the disjoint 
elements belonging to the 2a 2 and 30 .2 pairs are large enough to make non- 
negligible constributions. For the last two pairs the effect of the semi-disjoint 
coupling elements is almost entirely cancelled by the contribution from the 
disjoint coupling elements. The effect of neglecting coupling elements is in general 
difficult to estimate a priori .  Nevertheless, the magnitude of the semi-disjoint 
and disjoint elements listed in Table 6 are not very large, and on the whole the 
latter are smaller then the former. 

It is also of interest to indicate how the unlinked cluster effect is included in 
the IPPA formulation. In order to do this we follow, formally, a recent derivation 
given by Meyer [18] for including unlinked cluster effects in second order CI 
calculations. Consider the second order CI wavefunction and extend the configu- 
ration space to include all higher order effects, 4~, possible within the basis. One has 

= + _ , ~ - , j  + ~ C K ~  K . (21) 
i j  ab K 

The SchriSdinger equation is given by 

E = E 0 + ~ gij (22 a) 
and ij 

We now introduce the approximation 

2 (eTfl l K> cK ~- 2 ek,- (23) 
K k,l(~ei) 

which implies the assumption that unlinked clusters are the main source of higher 
order effects. Equation (10b) is obtained from Eq. (22b) by removing all the 
disjoint coupling elements from the latter and inserting Eq. (23) into Eq. (22b), 
which with rearrangement yields the IPPA energy denominator. 

Equation (23) gives the extent to which multiple substitutions are implicitly 
included in the IPPA in the form of unlinked clusters. The change in the energy 
denominator of Eq. (22 b) obtained by inserting Eq. (23) into it is 

k ( =/= i,j) 

and is intermediate between the energy shift leading to the IEPA [18, 30] 

~"-'~'~ij 

and the energy shift obtained by Kelly [321 from perturbation theory, i.e., 

k( @ i,j) 
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The absence of the sum Zgkj in the IPPA energy denominator is due to the orbital 
formulation of the method. Comparison of these three energy denominators shows 
that the extent to which the IPPA accounts for multiple substitutions is just 
intermediate between the IEPA [18, 31] and Kelly's perturbation theory [32]. 

It is also possible to introduce couplings into the energy denominator of the 
IPPA equations accounting for the other occupied orbitals in the system. The 
effectiveness of such procedures will be considered elsewhere. 

It should finally be mentioned that the IPPA is currently being applied to 
some other systems which include occupied rc orbitals. Results obtained so far 
indicate no major revisions in the conclusions reached here concerning the general 
applicability of the IPPA. 

4. Calculation of Energy Changes in One-Electron Processes 

4.1. Formulation of Methods for Calculating Vertical Ionization Potentials 

The fact that the IPPA yields orbital correlation corrections suggests that it 
would be possible to apply it with an appreciable reduction in computational 
effort to estimating the energy changes associated with one-electron changes 
from the ground state configuration. Energy shifts arising from excitation, ioniza- 
tion or negative-ion formation come under consideration as typical one-electron 
changes. 

In order to test this conjecture we calculate the first vertical ionization po- 
tential (IP) of BH, i.e., 

IP = E(BH +) - E(BH) (24) 

where BH + is in the configuration 1o-22o-23o -. The calculations are to be carried 
out under the following guiding conditions: 

a) Avoid an additional integral transformation by using the frozen orbitals 
obtained from the initial state. 

b) Obtain the changes in correlation energy, in so far as possible, directly 
from the OW of the orbital under consideration. 

Within this framework the reference state of BH + is constructed from the 
canonical HF-SCF orbitals of BH which is then augmented by all possible singly 
substituted configurations. These first order corrections account for relaxation 
of the occupied orbitals to the approximate Hartree-Fock wavefunction of the 
final state and for polarization [-3]. 

Beyond these corrections a number of second order corrections have to be 
accounted for [-18]: 

a) Additional types of double substitutions which can be formed in the final 
state due to enlargement of the correlation space. In BH + these are the semi- 
internal [9] correlations. 

b) Change in external correlation [-9] due to the removal of an electron from 
the frozen initial state wavefunction. 

c) Change in external correlation arising from the deformation of all orbital 
pairs involving the orbital under consideration, i.e., the la3a and 2~3a pairs. 



G r o u n d  Sta te  and  First  Ionized Sta te  of  Boron  Hydr ide  29 

d) Change in external correlation due to deformation of remaining pairs. 
The first two effects should make the largest contribution while (c) and (d) 

are expected to be small [3, 18]. By including two, three or all of these effects, 
three methods for calculating the IP are formulated as follows: 

1. For  BH + construct the trial wavefunction 

= + Z + Z E (25) 
i,a i , j ( r  3a) a 

where the third term in this wavefunction gives the semi-internal correlations. 
The energy results from the 3a OW of BH are used for the initial state. From the 
initial and final state calculations the change in reference state energy, e0, the 
change in energy due to singly substituted configurations, es, and the energy 
contribution, e~, f rom the semi-internally substituted configurations are calcu- 
lated. The change in external correlation is computed from the pair energies 
obtained from the 3a OW of BH, namely 

s . . . .  = - -  (1~'1~ 3a "[- 1 ~ 2 a 3 a  -~-"~3a2). ( 26 )  

The ionization potential may then be obtained from the sum 

IP = eo + es + 6i + e .... (27) 

and does not include any correlation changes due to the deformation of orbitals. 
2. The 3o OW of BH +, modified to include the semi-internal substitutions, 

is determined. The IP is now given directly by 

IP = E3~+s,(BH +) - E3~(BH). (28) 

Alternatively one can determine e~ from the wavefunction of Eq. (25) and deter- 
mine the remaining changes from the unmodified 3a OW of BH § The difference 
in the calculated IP between these two procedures is probably not greater then 
0.01 eV. In both cases the change in external correlation is determined from 

_ (2) + e .... - e3~ ( B H ) -  ~(32. ) (BH). (29) 

Thus, in this approximation the correlation energy changes arising from deforma- 
tions in the pairs la3a and 2a3a are also included. 

3. Carry out a complete IPPA calculation for BH + and determine the IP from 

IP = e 0 + e~ + e .... (30) 
where 

e .... = e (2) (BH +) - ~(2)(BH). (3 1) 

e .... includes the e n e r ~  effects of the semi-internal correlations and all energy 
changes due to deformations of excited orbitals in the final state. 

4.2. Orbital Wavefunctions and IPPA Correlation Energy of BH + 

In order to carry out the calculations described in Section 2.1, the orbital 
wavefunctions and orbital correlation energies of BH + are needed. The first 
order trial wavefunction has the form given by Eq. (19a) and yields an energy 
of -24.82389 a.u. for BH + (R = 2.336 b.) and an IP of 8.32 eV as compared with 
-24.82064 (R = 2.2,96 b.) and 8.45 eV obtained by Cade and Huo [23] for the 
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Table 7. IPPA-CCI pair energy analysis for BH +, R = 2.336. (Atomic units) 

OW e r - E~'ia let 2 la2a 2a 2 lo3a 2a3a -e~ 2) 

la -0.00187 0.03641 0.00363 0.00207 0.04024 
2a -0.00129 0.00356 0.03155 0.01393 0.04775 
3a -0.00059 0.00206 0.01398 0.01545 

-0.00187 0.03641 0.00359 0.03155 0.00207 0.01395 0.08570 

e ~) 0.04225 
d ~) + e ~2~ O. 12795 

etl) is the net first order correction obtained from ~g(1). Zg/is the first order contribution obtained 
from the OW's. 

S C F  energy and IP, respectively. The difference between the two results is primarily 
due to tile inclusion of polarization effects not present in Cade and Huo's  1-23] 
R H F  results. 

The estimate of e m obtained from Eqs. (19) is preferable to evaluating it 
from a series of first order N B G  calculations because the coupling elements are 
not necessarily negligible when the singly excited configurations contribute 
strongly. The value of e ta) obtained from an N B G  calculation is -0 .04597 a.u. 
as compared  with -0 .04225 a.u. obtained from the variational Calculation. In 
addition, it has been shown [33, 34] that first order unlinked cluster effects are 
small, so that their implicit inclusion following from first order N B G  calculations 
may contribute an additional error. 

The results of applying the IPPA to BH + are reported in Table 7. The first 
column gives the residual first order energy arising from the interaction between 
the singly and doubly substituted configurations. These effects are energy in- 
creasing. Compar ison of the BH + results with the BH results given in Table 4 
shows that the IO "2 pair energy is essentially unchanged. The 2a3a pair energy 
of BH + is nearly half that of BH, showing very little deformation due to ion 
formation. On the other hand, the BH + h r3a  pair has deformed somewhat, 
and its contribution is larger than half the BH lo-3o- contribution. The large 
change in the 2a z pair energy is mainly due to the contribution from semi-internal 
substitutions. The bulk of the semi-internal correlation energy comes from substi- 
tutions 2a 2---, 3ana. Finally, the source of additional energy lowering of the BH + 
1cr2a pair is due about  one-third to the semi-internal correlations and two-thirds 
to deformation. 

Combining the results of the first order wavefunction with the correlation 
energy reported in Table 7 yields a total energy of - 24.90959 a.u. The experimental 
energy is - 24.932 a.u. [23]. 

4.3. Vertical Ionization Potential 

The IP 's  calculated by methods (1), (2), and (3) described in Section 3.1 are 
given in Table 8. Table 8 also lists the individual terms contributing to the IP 
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Table 8. Vertical ionization potential of BH, R = 2.336 
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Method e 0 es e~i ~ .... IP (eV) 

1 0.34800 - 0.04195 - 0.00281 0.05320 9.70 
2 0.34800 - 0.04166 - 0.00281 0.05318 9.71 
3 0.34800 - 0.04225 - -  0.05226 9.74 
exp" 9.73 _+ 0.01 

" Adiabatic IP, see Ref. [-23]. 

defined in Eq. (27) for methods (1) and (2) and in Eq. (30) for method (3). ~s is 
obtained from Eq. (25), 7~3~(BH +) and Eqs. (19a, b) for methods (I), (2), and (3), 
respectively, esi is calculated from the wavefunction of Eq. (25) and used in both 
methods (1) and (2). The pair contributions to the semi-internal correlation are 
-0.00228, -0.00014 and -0.00039 a.u. for the 2o -2, la2a, and l~r3a pairs, 
respectively. 

The values of the calculated IP shows that deformation plays a very small 
role in the first vertical ionization potential of BH. Indeed, energy contributions 
from pairs including the 3a orbital are only 0.01 eV, while the remaining deforma- 
tions contribute only another 0.03 eV. 

These results show that the bulk of the correlation effects contributing to the 
IP has been recovered. Method (1) can be expected to be most sensitive to the 
completeness of the basis set, but all calculations reported here suffer from the 
fact that the ~ and q~ orbitals are omitted. Comparison with Bender and Davidson's 
[-22] results indicates that improvement of the basis will yield another 5 Too cor- 
relation energy. Applying this estimate to method (1) yields a vertical IP of 
9.77 eV. Calculations with improved basis sets are currently under investigation. 
It is finally noted that the experimental IP given in Table 8 is the adiabatic IP, 
which is generally less then the vertical IP [35]. 

For the first ionization potential method (1), which requires the least compu- 
tation, is expected to give a sufficiently accurate estimate of the IP to be useful 
in most cases. For higher IP's, and especially for inner-shell hole states, deforma- 
tion can be considerable [18, 36], so that for these cases only methods (2) or (3) 
will suffice. Results for hole states will be reported elsewhere. 

Acknowledgements. The author would like to thank Dr. W. Meyer for his valuable comments 
on calculating the ionization potentials and for critically reading the manuscript. Further thanks 
go to the University of Groningen Computation Center for their generous allotments of computing 
time. Finally, thanks go to Ms. D. Mehler-Ganoe for correcting the manuscript. 

References 

1. Rodberg, L.S.: Ann. of Phys. 2, 199 (1957) 
2. Brueckner, K.A., Levinson, C.A., Mahmoud,  H.: Phys. Rev. 95, 217 (1954); Brueckner, K.A.: Phys. 

Rev. 96, 508 (1954); 97, 1353 (1955); Brueckner, K.A., Levinson, C.A.: Phys. Rev. 97, 1344 (1955) 
3. Sinano~lu, O.: J. Chem. Phys. 36, 706 (1962); 3198 (1962); Advan. Chem. Phys. 14, 237 (1969) 
4. Nesbet, R.K.: Advan. Chem. Phys. 9, 321 (1965); 14, 1 (1969) 
5. Nesbet, R.K.: Phys. Rev. 109, 1632 (1958); Int. J. Quantum Chem. 4, 117 (1971) 



32 E.L. Mehler 

6. Kutzelnigg, W. in: Selected topics in molecular physics (E. Clementi, Ed.) pp. 91 102. Weinheim: 
Verlag Chemie 1972 

7. Nesbet, R.K.: Phys. Rev. 155, 51, 56 (1967); 175, 2 (1968); 3A, 87 (1971) 
8. Tuan, D.F., Sinano~lu, O.: J. Chem. Phys. 41, 2672 (1964); McKoy, V., Sinanoglu, O.: J. Chem. 

Phys. 41, 2689 (1964) 
9. Oksuz, I., Sinano~lu, O.: Phys. Rev. 181, 42, 54 (1969) 

10. Viers, A.W., Harris, F.E., Schaefer, H.F. III: Phys. Rev. 1A, 24 (1970) 
11. Weiss, A.W.: Phys. Rev. 3A, 126 (1971) 
12. Ahlrichs,R., Kutzelnigg, W. : Theoret. Chim.~ Acta (Berl.) 10, 377 (1968) 
13. G61us, M., Ahlrichs, R., Staemmler, V., Kutzelnigg, W.: Theoret. Chim. Acta (Berl.) 21, 63 (1971) 
14. Van Der Velde, G.A., Nieuwpoort, W.C.: Chem. Phys. Letters 13, 409 (1972) 
15. Lischka, H.: Theoret. Chim. Acta (Berl.) 31, 39 (1973); Staemmler, V.: Theoret. Chim. Acta (Berl.) 

31, 49 (1973) 
16. Barr, T.L., Davidson, E.R.: Phys. Rev. A 1, 644 (1970) 
17. Nesbet, R. K., Barr, T. L., Davidson, E. R.: Chem. Phys. Letters 4, 203 (1969) 
18. Meyer, W.: J. Chem. Phys. 58, 1017 (1973); Int. J. Quantum Chem. S 5, 341 (1971) 
19. Mehler, E.L. in: Papers, International Conference on Computers in Chemical Research and 

Education, Ljubljana, Yugoslavia 1973 
20. Nesbet, R.K.: Phys. Rev. 109, 1632 (1958) 
21. Szasz, L.: Z. Naturforschung 14a, 1014 (1959) 
22. Bender, C.F., Davidson, E.R.: Phys. Rev. 183, 23 (1969) 
23. Cade, P.E., Huo, W.M.: J. Chem. Phys. 45, 1063 (1966) 
24. Mehler, E.L.: Int. J. Quantum Chem. 7S, 437 (1973) 
25. Bender, C. F., Davidson, E. R.: J. Phys. Chem. 70, 2675 (1966) 
26. Musher, J.I.:TheoreticalchemistrySeries One, 1, W.B.Brown Ed.)p. l~40. Baltimore: University 

Park Press. Wahl, A. C. :ibid. pp. 41--70 
27. Mehler, E.L., v. d. Velde, G., Nieuwpoort0W.C.: To be published 
28. Mehler, E.L., Ruedenberg, K.R., Silver, D.M.: J. Chem. Phys. 52, 1181 (1970) 
29. Davidson, E.R., Bender, C.F.: J. Phys. Chem. 49, 465 (1968); 

Bender, C. F., ~Davidson, E. R.: Chem. Phys. Letters 3, 33 (1969); 
Davidson, E.R., Bender, C. F. : J. Chem. Phys. 56, 4334 (1972) 

30. Boys, S. F. in: Quantum theory of atoms, molecules, and the solid state, P.O. L6wdin Ed., p.253. 
New York: Interscience 1967 

31. Brenig, W.: Nucl. Phys. 4, 363 (1957) 
32~ Kelly, H. P.: Advan. Chem. Phys. 14, 129 (1969) 
36. Verhaegen, G., Bergen,J.J., Deslaux, J.P., Moser, C.M.: Chem. Phys. Letters 9, 479 (1971); 

Moser, C. M., Nesbet, R. K., Verhaegen, G.: Chem. Phys. Letters 12, 230 (1971) 
33. Sinano~lu, O., Tuan, D.F.: J. Chem. Phys. 38, 1740 (1963) 
34. Paldns, J., Ci2ek, J., Shavitt, I.: Phys. Rev. 5A, 50 (1972) 
35. Wilkinson, P. G.: Astrophys. J. 138, 778 (1963) 

Dr. E. L. Mehler 
Biozentrum, Universit~it Basel 
Klingelbergstrage 70- 
CH-4056 Basel, Switzerland 


